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Abstract

The TOPological Sub-Structural Molecular Design (TOPS-MODE) approach has been applied to the study of the permeability coefficient

of various compounds through low-density polyethylene at 21.1 8C. A model able to describe closed to 90% of the variance in the

experimental permeability of 63 organic compounds was developed with the use of the mentioned approach. In contrast, no one of nine

different approaches, including the use of constitutional, topological, BCUT, 2D autocorrelations, geometrical, RDF, 3D Morse, WHIM and

GETAWAY descriptors was able to explain more than 73% of the variance in the mentioned property with the same number of descriptors. In

addition, genetic algorithms were used in feature selection experiments considering all molecular descriptors in order to obtain mixed

models. Although, statistically significant models were derived containing other descriptors than spectral moments still the best one fitted out

model was find with these variables. Finally, the TOPS-MODE approach permitted to find the contribution of different fragments to the

permeability coefficients giving to the model a straightforward structural interpretability.

q 2003 Published by Elsevier Ltd.
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1. Introduction

The permeability of polymeric materials is an important

consideration in the pharmaceutical industry. Many phar-

maceutical preparations need to be protected from oxygen,

water vapor, carbon dioxide and other penetrants. The

polymeric packaging material for the preparation must serve

as an effective barrier to gaseous diffusion. In other

applications, the polymeric material serves as a core to the

controlled release of an active biological agent. Solubility

and diffusion of the (usually) small organic biological agent

in the polymer matrix is central to the controlled release

behavior.

The penetration of molecules through polymer films is

named ‘permeability’. There are many dimensions and units

found in literature for the general expression ‘permeability’

[1].

The permeability coefficient, in a strict sense, is not only

a function of the chemical structure of the polymer. It varies

also with the morphology of the polymer and depends on

many physical factors such as density, crystallinity and

orientation of the polymer chains. However, the chemical

structure of a polymer and the permeant can be considered

to be the predominant factor that controls the magnitude of

the permeability coefficient [2].

If a permeant does not interact with the polymer under

investigation, the permeability coefficient is characteristic

for the permeant-polymer system. This is the case with the

permeation of many gases, such as H2, He, N2, O2 and CO2,

through many polymers. On the other hand, if a permeant

interacts with the polymer the permeation coefficient is no

longer a constant, and many of them depend on the special

conditions of the measurement and on the history of the

polymer film. In such cases, a single value of the

permeability coefficient does not represent the characteristic

permeability of the polymer and it is necessary to know the

dependency of the permeability coefficient of all possible

variables in order to obtain the complete profile of the

permeability of the polymer [3].

In the context of in silico methods for modeling
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physicochemical and biological properties of chemicals the

topological sub-structural molecular design (TOPS-MODE)

approach has been introduced [4–19].

The successful applications of this theoretical approach

to the modeling of physical and physico-chemical properties

[4–9,13] have inspired us to perform a more exhaustive

study in order to test and/or validate the TOPS-MODE

applicability in this area. The permeability through low-

density polyethylene was previously studied using the

physico-chemical properties as molecular for a limited

data set of compounds. [3]. Here we will investigate the role

that TOPS-MODE and other molecular descriptors calcu-

lated from the molecular structure play on the explanation of

such property using an extended data set of 63 organic

compounds.

2. The TOPS-MODE approach

TOPS-MODE is based on the computation of the

spectral moments of the bond matrix, whose mathemat-

ical basis was described in previous reports by Estrada

[4–6]. The TOPS-MODE approach has been recently

reviewed in the literature [17], given a methodological

explanation of how to use it as well as a software

description [18].

According to Estrada the application of the TOPS-

MODE approach to the study of quantitative structure–

property relationships (QSPR) can be resumed in the

following set of steps:

1. To draw the hydrogen-depleted molecular graphs for

each molecule of the data set.

2. To use appropriated bond weights in order to differen-

tiate the molecular bonds, e.g. bond distance, bond

dipoles, bond polarizabilities, etc.

3. To compute the spectral moments of the bond matrix

with the appropriated weights for each molecule in the

data set, generating a table in which rows correspond to

the compounds and columns correspond to the spectral

moments of the bond matrix. Spectral moments are

defined as the trace of the different powers of the bond

matrix [16].

4. To find a QSPR by using any appropriated linear or non-

linear multi-variate statistical technique, such as multi-

linear regression analysis (MRA), etc.:

P ¼ a0m0 þ a1m1 þ a2m2 þ a3m3 þ · · · þ akmk þ b ð1Þ

where P is the property measurement, mk is the kth

spectral moment, and ak’s are the coefficients obtained

by the MRA.

5. To test the predictive capability of the QSPR model by

using cross-validation techniques.

6. To compute the contributions of different groups of

interest in order to determine their quantitative contri-

bution to the permeability of molecules under study.

The computation of fragment contributions to the

permeability property under study is probably the most

important advance of the TOPS-MODE approach to the

study of permeability variables compared to the traditional

QSAR and QSPR methods. The procedure consists of

calculating the spectral moment for all the fragments

contained in a given substructure, and by difference of

these moments we obtain the contribution of the sub-

structure. The general algorithm for this computational

approach is as follows.

First, we select the substructure whose contribution to the

moments we would like to determine. Then, we generate all

the fragments, which are contained in the corresponding

substructure, and calculate the spectral moments for both,

the substructure and all their fragments. The contribution of

the substructure to the spectral moments is finally obtained

as the difference between the spectral moments of the

substructure and all those from their fragments. Once, the

contributions of the different structural fragments are

obtained, we only need to substitute these contributions

into the quantitative model developed to describe the

property studied.

3. Data sets and computational strategies

A data set of 63 compounds for which the

permeability coefficients were reported in the literature

was selected [2]. The parameter studied is the logðpÞ

where p is the permeability coefficient through low-

density polyethylene. These kinds of studies usually have

a variation coefficient of 3–5% for this method [2]. The

names of the compounds, as well as the calculated and

experimental values of logðpÞ are shown in Table 1.

TOPS-MODE [18] and DRAGON [21] computer

softwares were employed to calculate the molecular

descriptors. In the case of TOPS-MODE software, only

the polar surface was used as bond weight for making

differentiations of heteroatoms. The selection of only this

type of descriptors from the whole pool of six types

included in TOPS-MODE methodology was carried out

on the sake of simplicity and on the belief that polarity

parameters influence the permeability of compounds

through polymer layers. The total number of descriptors

used for obtaining this model was 15 spectral moments.

On the other hand, we carry out geometry optimization

calculations for each compound used in this study using

the quantum chemical semi-empirical method AM1 [22]

included in MOPAC 6.0 [23]. Other nine models were

developed using the computer software Dragon [21],

calculating the Constitutional, Topological, BCUT, 2D

autocorrelations, Geometrical, RDF, 3D-MORSE, WHIM

and GETAWAY descriptors were [20]. The statistical

processing to obtain the QSAR models was carried out

by using the forward stepwise regression methods. In

addition to the models considering one specific family of
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Table 1

The observed, predicted, and residual values of permeability coefficients of 63 compounds through low-density polyethylene used to derive the QSPR

Number Compounds Observed Predicted Deleted Residuals

1 Acetaldehyde 0.373 1.114 20.756

2 Acetic anhydride 20.495 20.486 20.010

3 Acetone 0.427 1.022 20.607

4 Allyl alcohol 20.244 20.152 20.094

5 Amyl acetate 0.534 0.344 0.196

6 i-Amyl alcohol 21.108 20.425 20.705

7 i-Amyl propionate 0.591 0.253 0.350

8 n-Amyl propionate 1.072 0.253 0.847

9 Aniline 20.174 20.288 0.159

10 Benzaldehyde 0.427 0.929 20.513

11 Benzene 2.238 2.123 0.121

12 Benzoic acid 21.553 21.455 20.106

13 Benzyl alcohol 20.796 20.336 20.473

14 n-Butyl acetate 0.771 0.435 0.345

15 n-Butyl alcohol 20.745 20.334 20.423

16 s-Butyl alcohol 20.620 20.334 20.294

17 t-Butyl alcohol 21.000 20.334 20.685

18 Butyraldehyde 0.594 0.932 20.344

19 Carbon tetrachloride 2.380 2.307 0.078

20 Chloroacetic acid 20.921 21.271 0.374

21 m-Chloroaniline 20.201 20.288 0.122

22 Chlorobenzene 2.253 2.123 0.137

23 Chloromaleic anhydride 20.553 20.395 20.166

24 p-Chloro toluene 2.076 2.032 0.046

25 Cyclohexane 1.994 1.853 0.147

26 Decane 1.447 1.488 20.042

27 1,2-Dibromoethane 1.740 2.216 20.503

28 Dibutyl ether 1.526 1.355 0.176

29 o-Dichlorobenzene 1.785 2.123 20.356

30 Diethyl ether 2.090 1.719 0.383

31 Diethyl oxalate 20.553 20.982 0.473

32 Ethyl acetate 0.813 0.617 0.200

33 Ethyl alcohol 20.553 20.152 20.411

34 Ethylene glycol monobutyl ether 20.585 20.830 0.258

35 Ethyl formate 0.771 0.708 0.064

36 Ethyl mercaptan 2.196 2.259 0.062

37 Ethyl propionate 0.991 0.526 0.477

38 Formamide 20.699 21.208 0.704

39 Formic acid 20.585 21.180 0.632

40 Furfuryl alchol 21.046 20.848 20.208

41 n-Heptane 2.025 1.761 0.274

42 n-Heptene 2.025 1.851 0.181

43 n-Heptyl acetate 0.851 0.162 0.716

44 Heptyl alcohol 20.409 20.607 0.205

45 n-Hexane 2.140 1.852 0.299

46 Methyl acetate 0.740 0.708 0.033

47 Methyl alcohol 20.319 20.061 20.264

48 Methyl ethyl ketone 0.695 0.931 20.241

49 Methylcyclohexane 2.033 1.762 0.281

50 Nitrobenzene 0.286 20.096 0.392

51 Nitroethane 0.025 20.003 0.029

52 Nitromethane 20.081 0.088 20.174

53 Octyl alcohol 20.699 20.698 20.001

54 i-Pentane 2.025 1.943 0.086

55 n-Pentane 2.314 1.943 0.387

56 Phenol 20.699 20.264 20.447

57 n-Propil alcohol 20.699 20.243 20.468

58 Tetradecane 0.756 1.124 20.379

59 Tetradecene 0.672 1.214 20.558

60 Toluene 2.299 2.032 0.280

61 1,1,1-Trichloroethane 2.009 2.216 20.219

62 o-Xylene 2.004 1.941 0.066

63 p-Xylene 2.281 1.941 0.355
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descriptors mixed models with the entire pool of

descriptors were seek. In this experiment feature selec-

tion was carry out by means of genetic algorithm. All the

parameters such as population size mutation probabilities,

cross-over probabilities, smoothing and so on where fixed

at their default values [20].

The statistical significance of the models was determined

by examining the regression coefficient, the standard

deviation, the number of variables, the cross validation

leave-one-out statistics and the proportion between the

cases and variables in the equation.

4. Quantitative structure permeation relations

The best QSPR model obtained with the TOPS-MODE

descriptors is given below together with the statistical

parameters of the regression.

logðpÞ ¼ 2:3985 2 0:00mPS
2 þ 1:87 £ 1025mPS

4

23:50 £ 1027mPS
5

N ¼ 63 S ¼ 0:366 R2 ¼ 0:907 F ¼ 192:271

p ¼ 0:000 q2 ¼ 0:877 Scv ¼ 0:391

ð2Þ

Where N is the number of compounds included in the

model, R2 is the correlation coefficient, S the standard

deviation of the regression, F the Fisher ratio, q2 the

correlation coefficient of the cross-validation, p is the

significance of the variables in the model and Scv is

the standard deviation of the cross-validation.

The variables included in the model are the designed as

follow: the sub-index represents the order of the spectral

moment and the super-index the type of bond weight used,

i.e. PS for polar surface.

The structural significance of this model will be more

evident later when we analyze the contribution of the

different structural fragments to the permeability through

the polyethylene layer. From the statistical point of view

this model is a robust one as can be seen from the statistical

parameters of the cross-validation.

As we advance previously one of the objectives of the

current work is to compare the reliability of the TOPS-

MODE approach to describe the property under study as

compared with other different descriptors and methods.

Consequently, we have developed other nine models using

the same data set that was included in the TOPS-MODE

QSPR model. The results obtained with the use of

Constitutional, Topological, BCUT, 2D autocorrelations,

Geometrical, RDF, 3D Morse, WHIM, and GETAWAY

descriptors are given in Table 2.

As can be seen there are remarkable differences

concerning the explanation of the experimental variance

given by these models compared to the TOPS-MODE one.

While the TOPS-MODE QSPR model explains more than

90% of permeability the rest of the models are unable to

explain more than 87% of such variance. The Fig. 1 shows a

linear regression between the predicted and observed values

for log P for the Eq. (2).

The model obtained using the RDF descriptors explain

the 87% of the data variance, but this model need 12

variables for this. In the case of TOPS-MODE only need

three variables, this shown the great superiority of this

model over the best generate with the Dragon software.

On the other hand, models with these kinds, limiting the

number of variables was carry out. This is carried out with

the objective of compare the statistic parameters of these

models when all of them have the same variables number.

As can be seen, in the Table 3, the results obtained with the

model using the spectral moments are much better to the rest

of the using methodologies, which are unable of explain

more than of the 73% of the data variance, besides of

present important statistic parameters of higher quality that

all the models obtained, such as the Fischer ratio ðFÞ and the

standard deviation ðSÞ:

The TOPS-MODE model not only overtakes the other

nine models in the statistical parameters of the regression

but more importantly in the stability to the inclusion–

exclusion of compounds as measured by the correlation

coefficient and standard deviation of the cross-validation.

Because of the structural variability of the compounds in the

data set these statistics of the leave-one-out cross validation

Table 2

The statistical parameters of the lineal regressions models obtained for the ten kinds of descriptors

Descriptors No. of variables S R2 F p q2

Spectral moments 3 0.366 0.907 192.271 0.000 0.877

Constitutional 4 0.923 0.421 10.547 0.000 0.378

Topological 8 0.542 0.814 29.579 0.000 0.785

BCUT 7 0.845 0.539 9.194 0.000 0.412

2D autocorrelations 10 0.721 0.683 11.202 0.000 0.612

Geometrical 5 0.885 0.477 10.402 0.000 0.425

RDF 12 0.469 0.870 28.079 0.000 0.825

3D-MORSE 12 0.541 0.825 19.690 0.000 0.762

WHIM 8 0.846 0.546 8.131 0.000 0.501

GETAWAY 12 0.659 0.745 12.205 0.000 0.703
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might be considered as a good measurement of the

predictability of the models. As can be seen in the Table 3

the value of the determination coefficient of leave-one-out

cross validation for the model obtained with the spectral

moments ðq2 ¼ 0:877Þ was the highest for the all analyses

model proving the high predict power of this approach and

the high stability of the model.

However, in all previous studies we only consider

models with a specified family of molecular descriptors.

Thence, in order to complete the demonstration of the

potentialities of TOPS-MODE over the remnant ones mixed

models considering all the molecular descriptors at the same

time must be developed. The total number of molecular

descriptors considered here is higher than 1000. Thus, a

strategy for feature selection is necessary. In this sense, we

performed a genetic algorithm previous to forward stepwise

regression analysis. Table 4 depicts the results of this study.

It is interesting to note that spectral moments are selected in

almost models regardless of the number of generation used

in the generic algorithm feature selection and the number of

variables in the model. Anyhow, in our opinion the most

interesting result is that the best model found coincides with

the one reported in Eq. (2). These results have shown that

the TOPS-MODE approach not only explains the exper-

imental data, but seems to be the best one in doing so.

5. Fragments contributions

One of the most important advantages that TOPS-MODE

brings for the study of QSPR and QSAR is that concerned

with the structural interpretability of the models. This

interpretability comes from the fact that the spectral

moments can be expressed as linear combinations of

structural fragments. In such a way, we can learn what

fragments are making a positive or negative contribution to

the property under study, which can be interpreted in terms

of the physicochemical or biological processes influencing

Fig. 1. The linear relation between observed and predicted permeability for the compounds of the training set.

Table 3

The statistical parameters of the lineal regressions models obtained white three variables for the ten kinds of descriptors

Descriptors Variables S R2 F p q2

Spectral moments mPS
2 ; m .PS

4 ; mPS
5 0.366 0.907 192.271 0.000 0.877

Constitutional MW, nN, nO 0.918 0.416 14.048 0.000 0.378

Topological ZM1V, IC1, SEigp 0.808 0.548 23.871 0.000 0.517

BCUT BEHm3, BELp2, BELe2 0.948 0.379 12.005 0.000 0.325

2D autocorrelations ATS1p, GATS3e, GATS2e 0.913 0.423 14.458 0.000 0.402

Geometrical G(O· · ·Cl), MAXDP, FDI 0.897 0.443 15.663 0.000 0.413

RDF RDF010u, RDF010m, RDF020e 0.623 0.731 53.473 0.000 0.698

3D-MORSE Mor23m, Mor32m, Mor28p 0.926 0.407 13.512 0.000 0.346

WHIM Gm, Gu, Ds 1.000 0.308 8.780 0.000 0.232

GETAWAY ISH, R1e, RTp 0.911 0.426 14.641 0.000 0.351
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it. In Table 5 and the Fig. 2 we show the fragments and their

contributions to the permeation coefficient across the low-

density polyethylene as calculated from the Eq. (2).

Here, we have only study some small fragments present

in the structures of the compounds in the data set. However,

the extension of this study to other fragments in such

molecules or even to fragments in molecules not contained

in this data set is straightforward and it has been shown for

other particular cases elsewhere [8,10,11,19].

According to the contributions of the fragments F1 to F4

(see Fig. 2) the number of carbons increases in a chain the

permeation coefficient decreases. This is a logical size effect

involving the length of the chains in compounds as a factor

limiting the permeability through polyethylene layers.

On the other hand, it is observed from the contributions

of fragments F5 to F7 that an increase of the polarity of the

heteroatom produces a decrease of the permeation.

However, the contributions of the heteroatom are also

dependent on its volume as can be observed in the smaller

difference in contribution between the fragments F6 and F7.

Sulfur has a bigger atomic volume than nitrogen, but the

nitrogen has higher polarity than the sulfur, and thence the

result of this effect is a delay in the permeation process. A

similar trend is observed when we analyze the fragments F8

to F10.

Finally, when we compare fragments F6, F11 and F12,

we can observe that F11 delays approximately 44 times

more the process of permeation than the fragment F6 and

186 times than the fragment F12, in spite of the fact that the

former are smaller than the later.

This should be caused by the negative influence exerted

by the methyl group over the nitrogen in the F6 and F12 in

his interaction with the polymeric matrix. Several other

interesting relations can be obtained by analyzing the

contributions of the fragments in this table.

6. Concluding remarks

We have shown that the TOPS-MODE approach is able

to describe the permeability of different compounds through

low-density polyethylene at 21.1 8C. In fact, we have

developed a model for predicting the permeability coeffi-

cient of a data set of 63 permeants, which is both statistically

and chemically sounded. This model explains more than

90% of the variance in the experimental permeability

coefficients with a good predictive power. These features

are significantly better than that obtained from nine other

different methodologies.

On the other hand, the main advantage of using TOPS-

MODE approach in QSPR/QSAR has been confirmed again

in this work. This approach is able to derive group

contributions and gives simultaneously a valuable capability

Table 4

The models and statistical parameters obtained using a genetic algorithm feature selection previous to forward stepwise analysis

Generations Variables S R2 F p q2

100 mPS
2 ; mPS

4 ; RDF010m 0.560 0.784 71.414 0.000 0.72

RDF010m, RDF010u 0.634 0.717 76.043 0.000 0.63

1000 mPS
2 ; mPS

4 ; mPS
5 0.366 0.907 192.271 0.000 0.87

IC1, mPS
2 0.862 0.477 27.414 0.000 0.38

5000 mPS
2 ; mPS

4 ; Ms 0.555 0.786 72.515 0.000 0.471

mPS
2 ; Ms 0.906 0.477 21.964 0.000 0.39

Table 5

The contribution of different groups to the permeability coefficients through low-density polyethylene

Studied fragments Group contribution Studied fragments Group contribution

F1 0.810 F13 0.453

F2 0.657 F14 0.367

F3 0.533 F15 0.0002

F4 0.432 F16 0.025

F5 0.016 F17 0.020

F6 0.132 F18 0.064

F7 0.160 F19 0.003

F8 0.011 F20 0.002

F9 0.114 F21 0.0022

F10 0.150 F22 0.001

F11 0.003 F23 0.650

F12 0.559 F24 0.551
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of interpretation, contributing to understanding the physico-

chemical or biological processes involved.
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